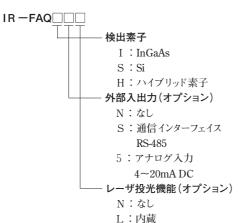
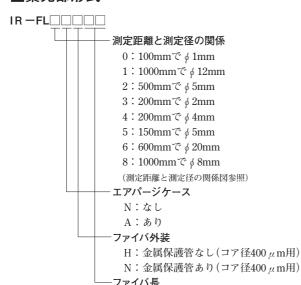
IR-FAシリーズ

ファイバ式放射温度計(2色形)・IR-FAQ


2色形の放射温度計IRーFAQは、InGaAs素子を使用し、300℃から測定できるIRーFAQI、シリコン素子を使用し、800℃から測定できるIRーFAQSと、ハイブリッド素子を使用した中高温用のIRーFAQHがあります。

2色形は、単色形にくらべ煙、蒸気、塵などの外乱や視野 欠けの影響を受けにくいことが特長です。


■特 長

- ●高精度、高速応答、高信頼性。
- ●小形、軽量、DINレール取付、温度表示、操作キー付。
- ●耐熱ファイバの使用で150℃の環境下でも水冷不要。
- ●多彩な信号変調機能により安定した温度測定ができる。
- ●アナログ入力による放射率比設定と自動放射率比演算機能を 選択可能(オプション)。
- ●通信インターフェイス・RS-485(MODBUS)を用意(オプション)。
- ●CEマーキング適合。

■集光部形式

長さを2m、4m、5m、10m、15m、20mから

選んでm単位でご記入ください

■測定範囲(標準目盛)

●IR-FAQI用

測定範囲	集光部形式
300∼1200°C	IR—FL5
400∼1500°C	IR—FL6
400∼1500°C	IR-FL0
	IR-FL1
	IR-FL2
	IR-FL3
	IR—FLA
450∼1500°C	IR-FL8

●IR-FAQS用

測定範囲	集光部形式
800~1600°C	IR-FL0
1000∼2000°C	IR—FL1
	IR-FL2
	IR-FL3
	IR-FL4
	IR—FL5
	IR-FL6
850∼1600°C	IR—FL8
1000∼2000°C	

●IR-FAQH用

測定範囲	集光部形式
600∼1500°C	IR-FL0
700∼2000°C	IR-FL1
800∼2400°C	IR-FL2
1000∼3000°C	IR-FL3
	IR—FL4
	IR—FL5
	IR-FL6
	IR-FL8

●集光部形式と測定範囲をご指定く ださい。

■測定距離と測定径の関係

●コア径400 µ m集光部

●コア径400	μM集元部
形式	測定距離と測定径 (mm)
IR−FL0□H IR−FL0□N	φ7 φ1 100 0
IR−FL1□H IR−FL1□N	\$\delta 21 \delta 12 \delta 5 \\ 1500 1000 0
IR−FL2□H IR−FL2□N	\$5 \$5 800 500 0
IR−FL3□H IR−FL3□N	\$2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
IR−FL4□H IR−FL4□N	\$\delta \frac{\psi 4}{200} \text{0}\$ \$500
IR−FL5□H IR−FL5□N	\$\delta 5 \delta 5 \delt
IR−FL6□H IR−FL6□N	\$37 \$20 \$5 1000 600
IR—FL8□H IR—FL8□N	\$\phi 15\$ \$\phi 8\$ \$\phi 5\$ 1500 1000 0

■コア径200 µmファイバ部と組合わせて、測定径を 1/2にすることも可能です。詳細はお問合せ下さい。

本体部

■一般仕様

測定方式:2色形

検 出 素 子: InGaAs / InGaAs (IR-FAQI)

Si/Si (IR-FAQS)

Si/InGaAs (IR-FAQH)

測 定 波 長:1.35/1.55 μm (IR-FAQI)

 $0.85/1.00\,\mu\,\mathrm{m}$ (IR—FAQS)

 $0.9/1.55 \,\mu\,{\rm m}\,\,\,({\rm IR-FAQH})$

測 定 範 囲:測定範囲表参照 **精 度 定 格**:1000℃未満…±5℃

1000℃以上1500℃未満…測定値の±0.5%

1500℃以上2000℃未満…測定値の±1.0%

2000℃以上…測定値の±2%

(ただし、ε≒基準動作条件において)

再 現 性:0.2℃以内

温度ドリフト:0.2℃/℃または測定値の0.02%/℃のどちらか大きい値

EMC指令要求のテスト環境において

IR-FAQHの場合…±10℃または測定範囲の±1%のど

ちらか大きい方

IR-FAQI、IR-FAQSの場合…±30℃または測定範囲の

±5%のどちらか大きい方

分解能:1.0℃ 応答時間(95%):40ms

放射率比補正: 設定値1.999~0.050

信号変調:DELAY…平均値のトレース (スムージング)

変調度0.0~99.9s、0.1sステップ任意設定

変調度0=REAL

PEAK…最高値のトレース、変調度0、2、5、10℃/s

選択設定、変調度0=ピークホールド

表 示:LCD4桁(温度およびパラメータ表示部)

表示単位…℃/℃ (操作キーで切換)

アナログ出力: 4~20mA DC (負荷抵抗500Ω以下、アイソレート出力)

・精度定格…出力範囲の±0.2%

・出力分解能…出力範囲の0.01%

・出力スケーリング…測定温度範囲内で任意設定

・模擬出力…アナログ出力の0~100%任意設定

接点出力:1点、上限(下限)警報またはエラー信号、

フォトカプラ30V DC、最大50mA

接 点 入 力:1点、ピークホールドリセット、またはサンプルホールド、

ドライ接点、またはオープンコレクタ

設定キーによる:オペレータモード…放射率比、信号変調、警報などの設定

設定パラメータ エンジニアリングモード…表示単位 (\mathbb{C}/\mathbb{C} F)、出力スケ

ーリング、ゼロ・スパン、自動放射率比演算の基

準温度入力、出力補正などの設定、オプション機

能の設定

演 算 機 能:ゼロ・スパン調整、自動放射率比演算、出力補正

| 自動放射率比演算:キー設定またはオプション | のアナログ入力で基準入力温度をインプットす

ることにより自動的に放射率比を演算します。

自己診断:機器温度異常、パラメータエラー

使用温度範囲:0~50℃

定 格 電 源:24V DC (許容電圧変動範囲…22~28V DC)

消費電力:最大3VA

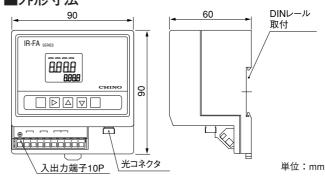
接続方法:クランプ式ネジなし端子接続取付方法:DINレール取付または壁取付

ケース材質:樹脂製

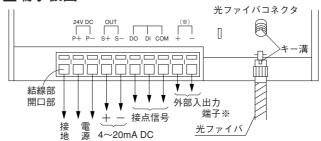
質 量:約250g (本体部のみ)

CEマーキング:適合、EMC指令 EN55011 Group1 ClassA、EN50082-2

*基準動作条件は、23℃±5℃

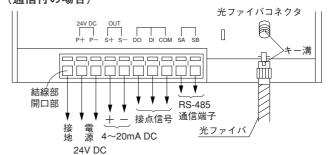

■標準付属品

マイナスドライバ、取扱説明書

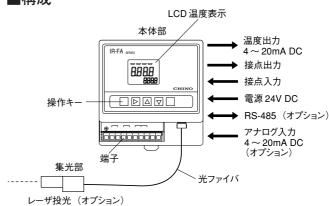

■オプション

レーザ投光機能	半導体レーザ投光器内蔵、			
	レーザ光1mW以下(645nm)クラス2			
アナログ入力	入力信号4~20mA DC			
	放射率比の遠隔設定または自動放射率比演算			
	の基準温度入力設定を選択			
通信インターフェイス	RS-485			
	測定データ(小数点以下1桁)の送信、			
	各設定のパラメータの送信および受信			

■外形寸法



■端子板図



24V DC ※アナログ入力付の場合のみ十、一が表記されます。

(通信付の場合)

■構成

PP-102-2

集光部・ファイバ部

■一般仕様

ファイバ:単芯石英ファイバ

コ ア 径:400 μm

外 装:金属保護管なし…耐熱被覆・ガラスウール編組

金属保護管あり…耐熱被覆・ガラスウール編組

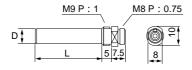
+SUSフレキシブルチューブ

使用温度範囲:0~150℃

長 さ:2m、4m、5m、10m、15m、20m

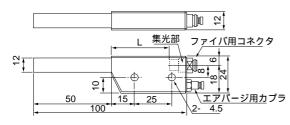
許容曲げ半径:R100mm接続方法:コネクタ接続取付方法:ネジ取付

アクセサリ:専用エアパージケース


材質:アルミ製

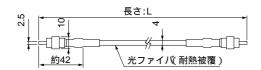
・エア流量:1~5N ℓ/min (クリーンエア)

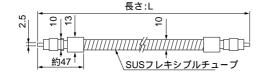
■外形寸法


単位:mm

●汎用集光部(単品形式:IR-ZFL□)

集光部タイプ	0, 1, 2, 3	4	5	6	8
L	35	15	10	10.5	45
φD		7.5			


●エアパージケース(単品形式:IR-ZFX02)


集光部タ	イプ	0, 1,	2, 3	4	5	6	8
L		10		30	35	34.5	0

■ファイバ長

●金属保護管なしファイバ部(単品形式:IR-ZFH□□、IR-ZFJ02)

●金属保護管ありファイバ部(単品形式:IR-ZFN□□、IR-ZFK02)

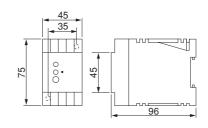
電源ユニット

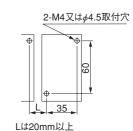
■形 式

IR-ZFEP

■仕 様

出 力 電 圧:24V DC


電 源:100-240VAC フリー電源 50/60Hz


出 力 電 流:600mA

外 形 寸 法:W45×H75×D96mm

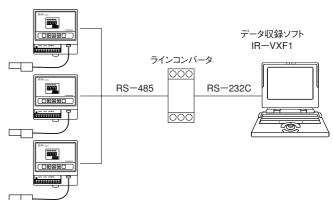
■外形寸法

■取付穴寸法

データ収録ソフト

IR-FAとパソコンを組合せ、本ソフトにより測定温度データの収録を行います。

■形 式

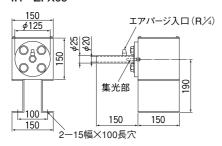


■仕 様

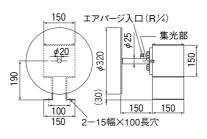
	作 環 境	OS	Windows2000/XP/Vista		
新 化		ハードディスク	空き容量:20MB以上		
到旧	塚 况	メモリ	256MB以上		
		ドライブ	CD-ROMドライブ		
		インターフェイス	RS-232Cポート1基		
		測定データのデシ	ジタル表示およびトレンド表示		
機	能	データ保存・再生(CSV形式)および印刷			
		接続台数:最大3台			

■機器構成

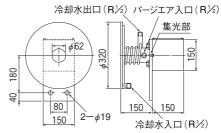
 $IR-FAQ_S$

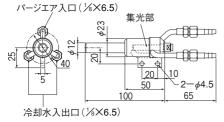


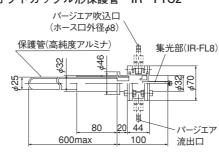
PP-102-2

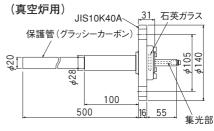


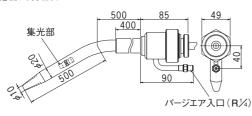
アクセサリ

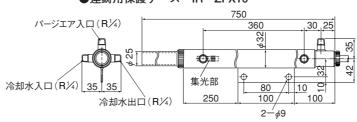

●エアパージハードケース IR-ZFX05

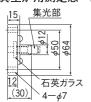

●ラジエーションシール付ハードケース IR-ZFX06


●水冷ラジエーションシール付ハードケース IR-ZFX07


●水冷ケース IR-ZFX08

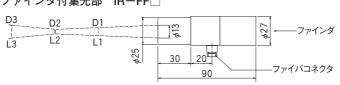

●オプトカップル形保護管 IR-FTC2

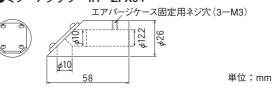

●オプトカップル形保護管 IR-FTCH1


●電縫管用保護ケース IR-ZFX09

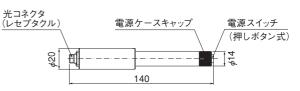
●連鋳用保護ケース IR-ZFX10

●真空炉用測定窓 IR-ZFX11


●真空フランジ IR-ZFX12


●光ファイバ中継コネクタ IR-ZFX13

●ファインダ付集光部 IRーFF□


●ミラーアダプタ IR-ZFX04

測定距離と測定径の関係

	タイプ1(φ5 at 500)	タイプ2(φ4 at 370)	タイプ3(φ10 at 1000)		
ĺ	測定距離	測定径	測定距離	測定径	測定距離	測定径	
	L1:400	D1: φ7	L1:270	D1: φ7	L1: 800	D1: φ11	
	L2:500	D2 : φ 5	L2:370	D2 : φ 4	L2: 1000	D2: φ 10	
	L3:600	D3 : φ9	L3:470	D3: φ9	L3: 1200	D3 : φ 15	

●レーザー投光器 IR-ZFX16(電池駆動)

株式会社チノ・

〒173-8632 東京都板橋区熊野町32-8 **☎**03-3956-2111

PP-102-2

営業所: 富 高 松 仙 台 東 京 名古屋 福 畄 新 立 Щ 潟 大 津 北九州 水前 戸 Ш 崎 大 阪 橋 厚 木 岡 山 静 大 広 島

↑ 安全に関するご注意

※記載製品は、一般工業計器として設計・製造したものです。 ※記載製品の設置・接続・使用に際し、取扱説明書をよくお読みの上、 正しくご使用下さい。

※記載内容は性能改善等により、お断りなく変更すること **尾100** がございますのでご了承下さい。 ※本PSシートの記載内容は2007年8月現在のものです。